首页> 外文OA文献 >Adapting ELM to Time Series Classification: A Novel Diversified Top-k Shapelets Extraction Method
【2h】

Adapting ELM to Time Series Classification: A Novel Diversified Top-k Shapelets Extraction Method

机译:使ELm适应时间序列分类:一种新的多样化Top-k   小形状提取方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ELM (Extreme Learning Machine) is a single hidden layer feed-forward network,where the weights between input and hidden layer are initialized randomly. ELMis efficient due to its utilization of the analytical approach to computeweights between hidden and output layer. However, ELM still fails to output thesemantic classification outcome. To address such limitation, in this paper, wepropose a diversified top-k shapelets transform framework, where the shapeletsare the subsequences i.e., the best representative and interpretative featuresof each class. As we identified, the most challenge problems are how to extractthe best k shapelets in original candidate sets and how to automaticallydetermine the k value. Specifically, we first define the similar shapelets anddiversified top-k shapelets to construct diversity shapelets graph. Then, anovel diversity graph based top-k shapelets extraction algorithm named as\textbf{DivTopkshapelets}\ is proposed to search top-k diversified shapelets.Finally, we propose a shapelets transformed ELM algorithm named as\textbf{DivShapELM} to automatically determine the k value, which is furtherutilized for time series classification. The experimental results over publicdata sets demonstrate that the proposed approach significantly outperformstraditional ELM algorithm in terms of effectiveness and efficiency.
机译:ELM(极限学习机)是单个隐藏层前馈网络,其中输入层和隐藏层之间的权重是随机初始化的。 ELMis有效,因为它利用分析方法来计算隐藏层和输出层之间的权重。但是,ELM仍然无法输出这些语义分类结果。为了解决这种限制,在本文中,我们提出了一个多样化的top-k shapelets转换框架,其中shapelets是子序列,即每个类的最佳代表性和解释性特征。正如我们所确定的那样,最具挑战性的问题是如何在原始候选集中提取最佳的k个形状,以及如何自动确定k值。具体来说,我们首先定义相似的形状和多样化的top-k形状,以构建多样性形状图。然后,提出了基于anovel分集图的top_k shapelets提取算法,称为\ textbf {DivTopkshapelets} \,以搜索topk多样化的shapelet。 k值,可进一步用于时间序列分类。在公共数据集上的实验结果表明,该方法在有效性和效率上都大大优于传统的ELM算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号